Facility Name: California State University, Dominguez Hills

Facility Address: 1000 East Victoria Street

City: Carson
State: California
ZIP: 90747

Owner or Operator Name: California State University, Dominguez Hills
Owner or Operator Address: 1000 East Victoria Street
City: Carson
State: California
ZIP: 90747

Facility Description

I. Self-Certification Statement (§112.6(a)(1))

The owner or operator of a facility certifies that each of the following is true in order to utilize this template to comply with the SPCC requirements:

1. I am familiar with the applicable requirements of 40 CFR part 112;
2. I have visited and examined the facility;
3. This Plan was prepared in accordance with accepted and sound industry practices and standards;
4. Procedures for required inspections and testing have been established in accordance with industry inspection and testing standards or recommended practices;
5. I will fully implement the Plan;
6. This facility meets the following qualification criteria (under §112.3(g)(1)):
 a. The aggregate aboveground oil storage capacity of the facility is 10,000 U.S. gallons or less; and
 b. The facility has had no single discharge as described in §112.1(b) exceeding 1,000 U.S. gallons and no two discharges as described in §112.1(b) each exceeding 42 U.S. gallons within any twelve month period in the three years prior to the SPCC Plan self-certification date, or since becoming subject to 40 CFR part 112 if the facility has been in operation for less than three years (not including oil discharges as described in §112.1(b) that are the result of natural disasters, acts of war, or terrorism); and
 c. There is no individual oil storage container at the facility with an aboveground capacity greater than 5,000 U.S. gallons.
7. This Plan does not deviate from any requirement of 40 CFR part 112 as allowed by §112.7(a)(2) (environmental equivalence) and §112.7(d) (impracticability of secondary containment) or include any measures pursuant to §112.9(c)(6) for produced water containers and any associated piping;
8. This Plan and individual(s) responsible for implementing this Plan have the full approval of management and I have committed the necessary resources to fully implement this Plan.
I also understand my other obligations relating to the storage of oil at this facility, including, among others:

1. To report any oil discharge to navigable waters or adjoining shorelines to the appropriate authorities. Notification information is included in this Plan.

2. To review and amend this Plan whenever there is a material change at the facility that affects the potential for an oil discharge, and at least once every five years. Reviews and amendments are recorded in an attached log [See Five Year Review Log and Technical Amendment Log in Attachments 1.1 and 1.2.]

3. Optional use of a contingency plan. A contingency plan:
 a. May be used in lieu of secondary containment for qualified oil-filled operational equipment, in accordance with the requirements under §112.7(k), and;
 b. Must be prepared for flowlines and/or intra-facility gathering lines which do not have secondary containment at an oil production facility, and;
 c. Must include an established and documented inspection or monitoring program; must follow the provisions of 40 CFR part 109; and must include a written commitment of manpower, equipment and materials to expeditiously remove any quantity of oil discharged that may be harmful. If applicable, a copy of the contingency plan and any additional documentation will be attached to this Plan as Attachment 2.

I certify that I have satisfied the requirement to prepare and implement a Plan under §112.3 and all of the requirements under §112.6(a). I certify that the information contained in this Plan is true.

Signature ___________________________ Title: Environmental, Health & Safety Manager
Name Mike Williams ___________________ Date: ____________________

II. Record of Plan Review and Amendments

Five Year Review (§112.5(b)):
Complete a review and evaluation of this SPCC Plan at least once every five years. As a result of the review, amend this Plan within six months to include more effective prevention and control measures for the facility, if applicable. Implement any SPCC Plan amendment as soon as possible, but no later than six months following Plan amendment. Document completion of the review and evaluation, and complete the Five Year Review Log in Attachment 1.1. If the facility no longer meets Tier I qualified facility eligibility, the owner or operator must revise the Plan to meet Tier II qualified facility requirements, or complete a full PE certified Plan.

<table>
<thead>
<tr>
<th>Table G-1 Technical Amendments (§§112.5(a), (c) and 112.6(a)(2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>This SPCC Plan will be amended when there is a change in the facility design, construction, operation, or maintenance that materially affects the potential for a discharge to navigable waters or adjoining shorelines. Examples include adding or removing containers, reconstruction, replacement, or installation of piping systems, changes to secondary containment systems, changes in product stored at this facility, or revisions to standard operating procedures.</td>
</tr>
<tr>
<td>Any technical amendments to this Plan will be re-certified in accordance with Section I of this Plan template. [§112.6(a)(2)] [See Technical Amendment Log in Attachment 1.2]</td>
</tr>
</tbody>
</table>
III. Plan Requirements

1. Oil Storage Containers (§112.7(a)(3)(i)):

<table>
<thead>
<tr>
<th>Oil Storage Container (indicate whether aboveground (A) or completely buried (B))</th>
<th>Type of Oil</th>
<th>Shell Capacity (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Steel Tank, Facility Services</td>
<td>Unleaded Gasoline</td>
<td>983.5</td>
</tr>
<tr>
<td>A – Steel Drum, Central Plant</td>
<td>Vacuum Pump Oil</td>
<td>55</td>
</tr>
<tr>
<td>A – Steel Drum, Auto Shop at Facility Services</td>
<td>Waste Oil</td>
<td>55</td>
</tr>
<tr>
<td>A – Steel Tank, Student Union, Loading Dock near propane</td>
<td>Waste Cooking Oil</td>
<td>160</td>
</tr>
<tr>
<td>A – Emergency Generator, Located at Central Plant but used for Science and Innovation Building</td>
<td>Diesel</td>
<td>195.5</td>
</tr>
<tr>
<td>A – Emergency Generator, Library</td>
<td>Diesel</td>
<td>195</td>
</tr>
<tr>
<td>A – Emergency Generator, Gym</td>
<td>Diesel</td>
<td>90</td>
</tr>
<tr>
<td>A – Emergency Generator, Between Welch Hall and Health Center</td>
<td>Diesel</td>
<td>1,000</td>
</tr>
<tr>
<td>A – Transformer, P5046772, Facility Services</td>
<td>Transformer Oil</td>
<td>270</td>
</tr>
<tr>
<td>A – Transformer, CMSCPHV6-5, CA Academy of Math and Science (CAMS)</td>
<td>Transformer Oil</td>
<td>361</td>
</tr>
<tr>
<td>A – Transformer, EACSUBSBS54, East Academic Complex</td>
<td>Transformer Oil</td>
<td>271</td>
</tr>
<tr>
<td>A – Transformer, SCC-004-HV5-6, School of Education</td>
<td>Transformer Oil</td>
<td>290</td>
</tr>
<tr>
<td>A – Transformer, P5063207, Pueblo Dominguez SH-1, BLDG F</td>
<td>Transformer Oil</td>
<td>192</td>
</tr>
<tr>
<td>A – Transformer, CPHV6-4, Pueblo Dominguez SH-2, BLDG X</td>
<td>Transformer Oil</td>
<td>195</td>
</tr>
<tr>
<td>A – Transformer, Extended Education Center</td>
<td>Transformer Oil</td>
<td>203</td>
</tr>
<tr>
<td>A – Transformer, JWH SUB SHC 200HV1&2 T1, Welch Hall</td>
<td>Transformer Oil</td>
<td>272</td>
</tr>
<tr>
<td>A – Transformer, JWH SUB SHC 200HV1&2 T2, Welch Hall</td>
<td>Transformer Oil</td>
<td>272</td>
</tr>
<tr>
<td>A – Transformer, South Library Building, Room 1921</td>
<td>Transformer Oil – Silicon Dielectric Fluid</td>
<td>440</td>
</tr>
<tr>
<td>A – Transformer, T-52, Science and Innovation Building</td>
<td>Transformer Oil – BIOTEMP Dielectric Fluid</td>
<td>300</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Natural Science and Math Room E-033</td>
<td>Hydraulic Oil</td>
<td>110</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Social & Behav. Science Room A122</td>
<td>Hydraulic Oil</td>
<td>100</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, University Theatre Room A-002</td>
<td>Hydraulic Oil</td>
<td>55</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator #1, Welch Hall, Room E-162</td>
<td>Hydraulic Oil</td>
<td>80</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator #2, Welch Hall, Room E-162</td>
<td>Hydraulic Oil</td>
<td>80</td>
</tr>
</tbody>
</table>
Table G-2 Oil Storage Containers and Capacities (continued)

<table>
<thead>
<tr>
<th>Oil Storage Container (indicate whether aboveground (A) or completely buried (B))</th>
<th>Type of Oil</th>
<th>Shell Capacity (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Steel Tank, Elevator #3, Welch Hall, Room E-162</td>
<td>Hydraulic Oil</td>
<td>80</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Lacorte Hall Basement Room A008</td>
<td>Hydraulic Oil</td>
<td>80</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Student Union, Room 185</td>
<td>Hydraulic Oil</td>
<td>240</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Student Union, Room 205</td>
<td>Hydraulic Oil</td>
<td>180</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Student Union Basement, Elevator #1</td>
<td>Hydraulic Oil</td>
<td>145</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Student Union Basement, Elevator #2</td>
<td>Hydraulic Oil</td>
<td>145</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Science and Innovation Building, Room 110, Elevator #1</td>
<td>Hydraulic Oil</td>
<td>152</td>
</tr>
<tr>
<td>A – Steel Tank, Elevator, Science and Innovation Building, Room 116, Elevator #2</td>
<td>Hydraulic Oil</td>
<td>170</td>
</tr>
</tbody>
</table>

Total Aboveground Storage Capacity	8,956 gallons
Total Completely Buried Storage Capacity	0 gallons
Facility Total Oil Storage Capacity	8,956 gallons

a Aboveground storage containers that must be included when calculating total facility oil storage capacity include: tanks and mobile or portable containers; oil-filled operational equipment (e.g. transformers); other oil-filled equipment, such as flow-through process equipment. Exempt containers that are not included in the capacity calculation include: any container with a storage capacity of less than 55 gallons of oil; containers used exclusively for wastewater treatment; permanently closed containers; motive power containers; hot-mix asphalt containers; heating oil containers used solely at a single-family residence; and pesticide application equipment or related mix containers.

b Although the criteria to determine eligibility for qualified facilities focuses on the aboveground oil storage containers at the facility, the completely buried tanks at a qualified facility are still subject to the rule requirements and must be addressed in the template; however, they are not counted toward the qualified facility applicability threshold.

c Counts toward qualified facility applicability threshold.

2. Secondary Containment and Oil Spill Control (§§112.6(a)(3)(i) and (ii), 112.7(c) and 112.9(c)(2)):

Table G-3 Secondary Containment and Oil Spill Control

<table>
<thead>
<tr>
<th>Secondary Containment and Oil Spill Control</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate secondary containment and/or diversionary structures or equipment is provided for all oil handling containers, equipment, and transfer areas to prevent a discharge to navigable waters or adjoining shorelines. The entire secondary containment system, including walls and floor, is capable of containing oil and is constructed so that any discharge from a primary containment system, such as a tank or pipe, will not escape the containment system before cleanup occurs.</td>
<td>☒</td>
</tr>
</tbody>
</table>

a Use one of the following methods of secondary containment or its equivalent: (1) Dikes, berms, or retaining walls sufficiently impervious to contain oil; (2) Curbing; (3) Culverting, gutters, or other drainage systems; (4) Weirs, booms, or other barriers; (5) Spill diversion ponds; (6) Retention ponds; or (7) Sorbent materials.
Table G-4 below identifies the tanks and containers at the facility with the potential for an oil discharge; the mode of failure; the flow direction and potential quantity of the discharge; and the secondary containment method and containment capacity that is provided.

<table>
<thead>
<tr>
<th>Area</th>
<th>Type of failure (discharge scenario)</th>
<th>Potential discharge volume (gallons)</th>
<th>Direction of flow for uncontained discharge</th>
<th>Secondary containment method</th>
<th>Secondary containment capacity (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Storage Containers and Mobile/Portable Containers<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A – Unleaded Gasoline, Steel Tank, Facility Services</td>
<td>Vehicle gas tank overfill, fitting leak/failure, seam failure, tank overfill, fuel transfer hose failure</td>
<td><1 – 983.5</td>
<td>South</td>
<td>Double Wall and Concrete Berm</td>
<td>Double Wall: 1,082 Concrete Berm: 754</td>
</tr>
<tr>
<td>A – Unleaded Gasoline, Steel Tank, Facility Services</td>
<td>Vehicle gas tank overfill, fitting leak/failure, seam failure, tank overfill, fuel transfer hose failure</td>
<td><1 – 983.5</td>
<td>South</td>
<td>Double Wall and Concrete Berm</td>
<td>Double Wall: 1,082 Concrete Berm: 754</td>
</tr>
<tr>
<td>A – Diesel, Steel Tank, Facility Services</td>
<td>Vehicle gas tank overfill, fitting leak/failure, seam failure, tank overfill, fuel transfer hose failure</td>
<td><1 – 500</td>
<td>South</td>
<td>Double Wall and Concrete Berm</td>
<td>Double Wall: 550 Concrete Berm: 549</td>
</tr>
<tr>
<td>A – Waste Oil, Steel Drum, Auto Shop at Facility Services</td>
<td>Fitting leak/failure, seam failure, tank overfill, oil transfer hose failure</td>
<td><1 – 55</td>
<td>Northeast</td>
<td>Secondary Containment Pallet</td>
<td>> 61</td>
</tr>
<tr>
<td>A – Vacuum Pump Oil, Steel Drum, Central Plant</td>
<td>Fitting leak/failure, seam failure, oil transfer hose failure</td>
<td><1 – 55</td>
<td>North</td>
<td>Secondary Containment Bin</td>
<td>85</td>
</tr>
<tr>
<td>A – Waste Oil, Steel Drum, Central Plant</td>
<td>Fitting leak/failure, seam failure, oil transfer hose failure</td>
<td><1 – 55</td>
<td>North</td>
<td>Secondary Containment Bin</td>
<td>85</td>
</tr>
<tr>
<td>A – Diesel, Emergency Generator, Located at Central Plant but used for Science and Innovation Building</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 195.5</td>
<td>West</td>
<td>Double Wall</td>
<td>215</td>
</tr>
<tr>
<td>A – Waste Cooking Oil, Steel Tank, Student Union, Loading Dock near propane</td>
<td>Fitting leak, seam failure, tank overfill, oil transfer hose failure</td>
<td><1 – 160</td>
<td>Northwest</td>
<td>Spill kit, sorbent materials</td>
<td>Absorbs up to 5</td>
</tr>
<tr>
<td>A – Diesel, Emergency Generator, Library</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 195</td>
<td>Radial</td>
<td>Double Wall</td>
<td>215</td>
</tr>
<tr>
<td>A – Diesel, Emergency Generator, Gym</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 90</td>
<td>Radial</td>
<td>Double Wall</td>
<td>99</td>
</tr>
<tr>
<td>A – Diesel, Emergency Generator, Between Welch Hall and Health Center</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 1,000</td>
<td>Northeast</td>
<td>Double Wall</td>
<td>1,100</td>
</tr>
<tr>
<td>Oil-filled Operational Equipment (e.g., hydraulic equipment, transformers)<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A – Transformer Oil, P5046772, Facility</td>
<td>Fitting leak, seam failure</td>
<td><1 – 270</td>
<td>Southwest, 5-10 gal pit for incidental</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>Type of failure (discharge scenario)</td>
<td>Potential discharge volume (gallons)</td>
<td>Direction of flow for uncontained discharge</td>
<td>Secondary containment method(a)</td>
<td>Secondary containment capacity (gallons)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Services</td>
<td>Fitting leak, seam failure</td>
<td><1 – 361</td>
<td>East</td>
<td>spills (refer to Oil Spill Contingency Plan)</td>
<td></td>
</tr>
<tr>
<td>A – Transformer Oil, CMSCPHV6-5, CA Academy of Math and Science (CAMS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A – Transformer Oil, EACSUBSBS54, East Academic Complex</td>
<td>Fitting leak, seam failure</td>
<td><1 – 271</td>
<td>West</td>
<td>5-10 gal pit for incidental spills (refer to Oil Spill Contingency Plan)</td>
<td>-</td>
</tr>
<tr>
<td>A – Transformer Oil, SCC-004-HV5-6, School of Education</td>
<td>Fitting leak, seam failure</td>
<td><1 – 290</td>
<td>Southwest</td>
<td>5-10 gal pit for incidental spills (refer to Oil Spill Contingency Plan)</td>
<td>-</td>
</tr>
<tr>
<td>A – Transformer Oil, P5063207, Pueblo Dominguez SH-1, BLDG F</td>
<td>Fitting leak, seam failure</td>
<td><1 – 192</td>
<td>Northwest</td>
<td>5-10 gal pit for incidental spills (refer to Oil Spill Contingency Plan)</td>
<td>-</td>
</tr>
<tr>
<td>A – Transformer Oil, CPHV6-4, Pueblo Dominguez SH-2, BLDG X</td>
<td>Fitting leak, seam failure</td>
<td><1 – 195</td>
<td>Radial, West</td>
<td>5-10 gal pit for incidental spills (refer to Oil Spill Contingency Plan)</td>
<td>-</td>
</tr>
<tr>
<td>A – Transformer Oil, Extended Education Center</td>
<td>Fitting leak, seam failure</td>
<td><1 – 203</td>
<td>Northwest</td>
<td>5-10 gal pit for incidental spills (refer to Oil Spill Contingency Plan)</td>
<td>-</td>
</tr>
<tr>
<td>A – Transformer Oil, JWH SUB SHC 200HV1&2 T1, Welch Hall</td>
<td>Fitting leak, seam failure</td>
<td><1 – 272</td>
<td>Northeast, West</td>
<td>10-15 gal pit for incidental spills (refer to Oil Spill Contingency Plan)</td>
<td>-</td>
</tr>
<tr>
<td>A – Transformer Oil, JWH SUB SHC 200HV1&2 T2, Welch Hall</td>
<td>Fitting leak, seam failure</td>
<td><1 – 272</td>
<td>Northeast, West</td>
<td>10-15 gal pit for incidental spills (refer to Oil Spill Contingency Plan)</td>
<td>-</td>
</tr>
<tr>
<td>A – Transformer Oil, South Library Building, Room 1921</td>
<td>Fitting leak, seam failure</td>
<td><1 – 440</td>
<td>Radial, Southwest</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Transformer Oil, T-52, Science and Innovation Building</td>
<td>Fitting leak, seam failure</td>
<td><1 – 300</td>
<td>Radial, Northwest</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Natural Science and Math, Room E-033</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 110</td>
<td>Radial</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Social & Behav. Science, Room A122</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 100</td>
<td>Radial, N-NW</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>Area</td>
<td>Type of failure (discharge scenario)</td>
<td>Potential discharge volume (gallons)</td>
<td>Direction of flow for uncontained discharge</td>
<td>Secondary containment methoda</td>
<td>Secondary containment capacity (gallons)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, University Theatre, Room A-002</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 55</td>
<td>Radial, N-NW</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator #1, Welch Hall, Room E-162</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 80</td>
<td>Radial, Southeast</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator #2, Welch Hall, Room E-162</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 80</td>
<td>Radial, Southeast</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator #3, Welch Hall, Room E-162</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 80</td>
<td>Radial, Southeast</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Lacorte Hall Basement, Room A008</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 80</td>
<td>Radial, North</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Student Union, Room 185</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 240</td>
<td>Radial, W-SW</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Student Union, Room 205</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 180</td>
<td>Radial, S-SE</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Student Union Basement, Elevator #1</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 145</td>
<td>Radial, West</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Student Union Basement, Elevator #2</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 145</td>
<td>Radial, West</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Science and Innovation Building, Room 110, Elevator #1</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 152</td>
<td>Radial</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>A – Hydraulic Oil, Steel Tank, Elevator, Science and Innovation Building, Room 116, Elevator #2</td>
<td>Fitting leak, seam failure, tank overfill</td>
<td><1 – 170</td>
<td>Radial</td>
<td>Refer to Oil Spill Contingency Plan</td>
<td>-</td>
</tr>
<tr>
<td>Piping, Valves, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Dispensing Hoses/Attachments (throughout)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Fitting leak or failure, hose failure <1 Radial Spill Kit and Drip Pans Absorbs up to 5/pans contain
Table G-4 Containers with Potential for an Oil Discharge

<table>
<thead>
<tr>
<th>Area</th>
<th>Type of failure (discharge scenario)</th>
<th>Potential discharge volume (gallons)</th>
<th>Direction of flow for uncontained discharge</th>
<th>Secondary containment method<sup>a</sup></th>
<th>Secondary containment capacity (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Transfer Areas (location where oil is loaded to or from a container, pipe or other piece of equipment.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>up to 2</td>
</tr>
<tr>
<td>Refilling Oil Dispensers (throughout)</td>
<td>Fitting Leak or Failure</td>
<td><1</td>
<td>Radial</td>
<td>Spill Kit and Drip Pans</td>
<td>Absorbs up to 5/pans contain up to 2</td>
</tr>
<tr>
<td>Other Oil-Handling Areas or Oil-Filled Equipment (e.g. flow-through process vessels at an oil production facility)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Use one of the following methods of secondary containment or its equivalent: (1) Dikes, berms, or retaining walls sufficiently impervious to contain oil; (2) Curbing; (3) Culverting, gutters, or other drainage systems; (4) Weirs, booms, or other barriers; (5) Spill diversion ponds; (6) Retention ponds; or (7) Sorbent materials.

^b For storage tanks and bulk storage containers, the secondary containment capacity must be at least the capacity of the largest container plus additional capacity to contain rainfall or other precipitation.

^c For oil-filled operational equipment: Document in the table above if alternative measures to secondary containment (as described in §112.7(k)) are implemented at the facility.
3. Inspections, Testing, Recordkeeping and Personnel Training (§§112.7(e) and (f), 112.8(c)(6) and (d)(4), 112.9(c)(3), 112.12(c)(6) and (d)(4)):

Table G-5 Inspections, Testing, Recordkeeping and Personnel Training

<table>
<thead>
<tr>
<th>Inspection/Testing/Recordkeeping</th>
<th>This Facility Meets Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>An inspection and/or testing program is implemented for all aboveground bulk storage containers and piping at this facility. [§§112.8(c)(6) and (d)(4), 112.9(c)(3), 112.12(c)(6) and (d)(4)]</td>
<td>☒</td>
</tr>
<tr>
<td>The following is a description of the inspection and/or testing program (e.g. reference to industry standard utilized, scope, frequency, method of inspection or test, and person conducting the inspection) for all aboveground bulk storage containers and piping at this facility: Inspections, Testing, Recordkeeping</td>
<td></td>
</tr>
</tbody>
</table>

- Designated CSUDH staff are trained to do visual inspections of oil storage, oil transfer areas, and oil equipment. A designated trained staff performed periodic visual inspections of the aboveground oil storage containers and oil-filled operational equipment using Attachment 3.1 to document inspections; records of inspections consist of the monthly inspection checklist and the annual inspection checklist in the Steel Tank Institute (STI) SP001 inspection standard. Visual inspections of oil storage containers follow the inspection schedule in Attachment 3.2 of this plan.

- The liquid level gauges on the unleaded gasoline tanks at the Facility Services are inspected and calibrated at least annually following the manufacturer’s procedures by an outside vendor. Attachment 3.1 documents these inspections.

- An assigned employee also visually inspects the dispensers on the unleaded gasoline and diesel oil tanks at the Facility Services for indications of deterioration and discharges, including the transfer hoses, valves, and other fittings, at least weekly following the manufacturer’s procedures.

- Designated CSUDH staff will inspect concrete berm secondary containment(s) and secondary containment pallet(s) on a weekly basis for signs of deterioration, discharges (leaking tanks or piping), or accumulation of oil. In addition, staff will inspect the exterior containment(s) after any rainfall. Inspections will be documented using Attachment 3.1. If the containment does not have drains, any collected rainwater will be removed from the containment using a portable pump, but only after sampling the water for analysis of hydrocarbons. If the laboratory reports the presence of hydrocarbons, or oil sheen is detected, then a waste oil hauler will be contracted to transport the oily rainwater for proper disposal. Each drainage activity is recorded in Attachment 3.3. Record keeping for disposal of waste oil or oil-contaminated water accumulated in the concrete berm containment area is in Attachment 3.3.

- Emergency generators are inspected by an outside vendor biannually for filters, hoses, caps, leaks, locks, and/or oil changes. The generators are “test run” monthly. All inspection and test records are signed and kept on file.

- Elevators are serviced monthly by an outside vendor and as needed. Inspections include inspecting for lamps, signals, emergency lighting, leaks, oil level, controller, motor, etc. Internal inspections are also performed by designated trained CSUDH staff on a weekly basis for signs of deterioration or discharges (leaking tanks or piping or valves). Inspections will be documented using Attachment 3.1.

- Transformers are serviced as needed by an outside vendor. Inspections for transformers are completed on a weekly basis for signs of deterioration or discharges (leaking tanks or piping or valves). Inspections will be documented using Attachment 3.1.

- If an employee encounters a spill during an inspection of the oil storage, operational or transfer equipment, the employee will immediately take the necessary actions outlined in Table G-7.

Inspections, tests, and records are conducted in accordance with written procedures developed for the facility. Records of inspections and tests kept under usual and customary business practices will suffice for purposes of this paragraph. [§112.7(e)] ☒

A record of the inspections and tests are kept at the facility or with the SPCC Plan for a period of three years. [§112.7(e)] [See Inspection Log and Schedule in Attachment 3.1] ☒

Inspections and tests are signed by the appropriate supervisor or inspector. [§112.7(e)] ☒
Personnel, training, and discharge prevention procedures [§112.7(f)]

<table>
<thead>
<tr>
<th>Oil-handling personnel are trained in the operation and maintenance of equipment to prevent discharges; discharge procedure protocols; applicable pollution control laws, rules, and regulations; general facility operations; and, the contents of the facility SPCC Plan. [§112.7(f)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
</tr>
</tbody>
</table>

A person who reports to facility management is designated and accountable for discharge prevention. [§112.7(f)]

Name/Title: Mike Williams, Environmental, Health & Safety Manager

Discharge prevention briefings are conducted for oil-handling personnel annually to assure adequate understanding of the SPCC Plan for that facility. Such briefings highlight and describe past reportable discharges or failures, malfunctioning components, and any recently developed precautionary measures. [§112.7(f)]

[See Oil-handling Personnel Training and Briefing Log in Attachment 3.4]

4. Security (excluding oil production facilities) §112.7(g):

<table>
<thead>
<tr>
<th>Table G-6 Implementation and Description of Security Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security measures are implemented at this facility to prevent unauthorized access to oil handling, processing, and storage area.</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>The following is a description of how you secure and control access to the oil handling, processing and storage areas; secure master flow and drain valves; prevent unauthorized access to starter controls on oil pumps; secure out-of-service and loading/unloading connections of oil pipelines; address the appropriateness of security lighting to both prevent acts of vandalism and assist in the discovery of oil discharges:</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>• All areas with oil handling and storage areas are locked when not in use or being serviced. Only authorized CSUDH staff can gain access with keys. Facility Services diesel and unleaded gasoline is stored behind a gated area that is unlocked during business hours and locked outside of business hours.</td>
</tr>
<tr>
<td>• Drums are located in the shop areas, which are locked when not in use.</td>
</tr>
<tr>
<td>• Emergency Generators and select transformers are within locked/gated areas or rooms, and only authorized CSUDH staff can gain access with keys.</td>
</tr>
</tbody>
</table>

5. Emergency Procedures and Notifications (§112.7(a)(3)(iv) and 112.7(a)(5)):

<table>
<thead>
<tr>
<th>Table G-7 Description of Emergency Procedures and Notifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>The following is a description of the immediate actions to be taken by facility personnel in the event of a discharge to navigable waters or adjoining shorelines [§112.7(a)(3)(iv) and 112.7(a)(5)]:</td>
</tr>
<tr>
<td>☒</td>
</tr>
<tr>
<td>CSUDH maintains a “protect in place” policy for spills. In the event of a spill, a spill response list is available and used by trained staff. For a small release (<5 gal), CSUDH designated staff will use the appropriate devices to stop the spill and eliminate the hazard. During business hours, the designated personal accountable for discharge prevention is contacted. During off hours, the CSUDH Police department is contacted.</td>
</tr>
<tr>
<td>In the event of a spill:</td>
</tr>
<tr>
<td>• Shut down pumping in event of a spill during fuel transfer operation.</td>
</tr>
<tr>
<td>• Eliminate potential sources of ignition such as open flames or sparks.</td>
</tr>
<tr>
<td>• If possible, safe, and trained to do so, identify and secure source of the discharge and contain the discharge with sorbents, sandbags, or other material from the spill kits. Typically small releases only (<5 gallons).</td>
</tr>
<tr>
<td>o Main spill kit located [Facility Services – Office & Auto Shop]</td>
</tr>
<tr>
<td>o Other spill kits located [Central Plant – Office; Welch Hall – Elevator Room; La Corte Hall – Elevator Room]</td>
</tr>
<tr>
<td>o Sorbent granules and pads [Facility Services; Central Plant; Loker Student Union – Maintenance Shop at Loading Dock]</td>
</tr>
<tr>
<td>• Limit access to the area by shutting the room door.</td>
</tr>
<tr>
<td>• Large spills are to be addressed by the emergency response contractor, North State Environmental, and contact regulatory authorities and other response personnel and organization (see section 6).</td>
</tr>
<tr>
<td>• Evacuate to a safe area away from the building for a major spill; do not return to the building/area until instructed that it safe to do so.</td>
</tr>
</tbody>
</table>
6. Contact List (§112.7(a)(3)(vi)):

<table>
<thead>
<tr>
<th>Contact Organization / Person</th>
<th>Telephone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Response Center (NRC)</td>
<td>1-800-424-8802</td>
</tr>
<tr>
<td>Cleanup Contractor(s)</td>
<td>909-875-9288</td>
</tr>
<tr>
<td>North State Environmental</td>
<td>1045 West Rialto Avenue, Rialto, CA 92376</td>
</tr>
<tr>
<td>Key Facility Personnel</td>
<td></td>
</tr>
<tr>
<td>Designated Person Accountable for Discharge Prevention:</td>
<td></td>
</tr>
<tr>
<td>Johnathan Scheffler – Director, Facilities Services</td>
<td>Office: 310-243-2139</td>
</tr>
<tr>
<td></td>
<td>Emergency: 310-428-5871</td>
</tr>
<tr>
<td>Richard Tetrick (secondary) – Associate Director, Facilities Services</td>
<td>Office: 310-243-3795</td>
</tr>
<tr>
<td></td>
<td>Emergency: 310-261-1908</td>
</tr>
<tr>
<td>State Oil Pollution Control Agencies</td>
<td>800-852-7550</td>
</tr>
<tr>
<td>Office of Spill Prevention and Response</td>
<td></td>
</tr>
<tr>
<td>Other State, Federal, and Local Agencies</td>
<td></td>
</tr>
<tr>
<td>California Governor’s Office of Emergency Services</td>
<td>800-852-7550 or 916-845-8911</td>
</tr>
<tr>
<td>DTSC Emergency Response Program</td>
<td>M-F, 8am-5pm: 800-260-3972</td>
</tr>
<tr>
<td></td>
<td>After Hours: 800-852-7550</td>
</tr>
<tr>
<td>Regional Water Quality Control Board</td>
<td>213-576-6600</td>
</tr>
<tr>
<td>Los Angeles Region 4</td>
<td></td>
</tr>
<tr>
<td>Local Fire Department</td>
<td>310-324-5941</td>
</tr>
<tr>
<td>LA County Fire Dept. Station 116</td>
<td>Or 911</td>
</tr>
<tr>
<td>Local Police Department</td>
<td>310-243-3639 (or 911 for emergencies)</td>
</tr>
<tr>
<td>CSUDH Police</td>
<td>310-830-1123</td>
</tr>
<tr>
<td>Los Angeles County Sheriff’s Department – Carson Station</td>
<td></td>
</tr>
<tr>
<td>Hospital</td>
<td>310-222-2345</td>
</tr>
<tr>
<td>Harbor-UCLA Medical Center</td>
<td>1000 W. Carson Street, Torrance, CA 90509</td>
</tr>
</tbody>
</table>
7. NRC Notification Procedure (§112.7(a)(4) and (a)(5)):

In the event of a discharge of oil to navigable waters or adjoining shorelines, the following information identified in Attachment 4 will be provided to the National Response Center immediately following identification of a discharge to navigable waters or adjoining shorelines [See Discharge Notification Form in Attachment 4]: [§112.7(a)(4)]

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The exact address or location and phone number of the facility;</td>
<td>• Description of all affected media;</td>
</tr>
<tr>
<td>• Date and time of the discharge;</td>
<td>• Cause of the discharge;</td>
</tr>
<tr>
<td>• Type of material discharged;</td>
<td>• Any damages or injuries caused by the discharge;</td>
</tr>
<tr>
<td>• Estimate of the total quantity discharged;</td>
<td>• Actions being used to stop, remove, and mitigate the effects of the discharge;</td>
</tr>
<tr>
<td>• Estimate of the quantity discharged to navigable waters;</td>
<td>• Whether an evacuation may be needed; and</td>
</tr>
<tr>
<td>• Source of the discharge;</td>
<td>• Names of individuals and/or organizations who have also been contacted.</td>
</tr>
</tbody>
</table>

8. SPCC Spill Reporting Requirements (Report within 60 days) (§112.4):

Submit information to the EPA Regional Administrator (RA) and the appropriate agency or agencies in charge of oil pollution control activities in the State in which the facility is located within 60 days from one of the following discharge events:

1. A single discharge of more than 1,000 U.S. gallons of oil to navigable waters or adjoining shorelines, or
2. Two discharges to navigable waters or adjoining shorelines each more than 42 U.S. gallons of oil occurring within any twelve-month period

You must submit the following information to the RA:

1. Name of the facility;
2. Your name;
3. Location of the facility;
4. Maximum storage or handling capacity of the facility and normal daily throughput;
5. Corrective action and countermeasures you have taken, including a description of equipment repairs and replacements;
6. An adequate description of the facility, including maps, flow diagrams, and topographical maps, as necessary;
7. The cause of the reportable discharge, including a failure analysis of the system or subsystem in which the failure occurred; and
8. Additional preventive measures you have taken or contemplated to minimize the possibility of recurrence
9. Such other information as the Regional Administrator may reasonably require pertinent to the Plan or discharge

* * * * *
The owner or operator must meet the general rule requirements as well as requirements under this section. Note that not all provisions may be applicable to all owners/operators. For example, a facility may not maintain completely buried metallic storage tanks installed after January 10, 1974, and thus would not have to abide by requirements in §§112.8(c)(4) and 112.12(c)(4), listed below. In cases where a provision is not applicable, write “N/A”.

<table>
<thead>
<tr>
<th>Table G-10 General Rule Requirements for Onshore Facilities</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage from diked storage areas is restrained by valves to prevent a discharge into the drainage system or facility effluent treatment system, except where facility systems are designed to control such discharge. Diked areas may be emptied by pumps or ejectors that must be manually activated after inspecting the condition of the accumulation to ensure no oil will be discharged. [§§112.8(b)(1) and 112.12(b)(1)]</td>
<td>☒</td>
</tr>
<tr>
<td>Valves of manual, open-and-closed design are used for the drainage of diked areas. [§§112.8(b)(2) and 112.12(b)(2)]</td>
<td>☐</td>
</tr>
<tr>
<td>The containers at the facility are compatible with materials stored and conditions of storage such as pressure and temperature. [§§112.8(c)(1) and 112.12(c)(1)]</td>
<td>☒</td>
</tr>
<tr>
<td>Secondary containment for the bulk storage containers (including mobile/portable oil storage containers) holds the capacity of the largest container plus additional capacity to contain precipitation. Mobile or portable oil storage containers are positioned to prevent a discharge as described in §112.1(b). [§112.6(a)(3)(ii)]</td>
<td>☒</td>
</tr>
<tr>
<td>If uncontaminated rainwater from diked areas drains into a storm drain or open watercourse the following procedures will be implemented at the facility: [§§112.8(c)(3) and 112.12(c)(3)]</td>
<td>☒</td>
</tr>
<tr>
<td>- Bypass valve is normally sealed closed</td>
<td>☐</td>
</tr>
<tr>
<td>- Retained rainwater is inspected to ensure that its presence will not cause a discharge to navigable waters or adjoining shorelines</td>
<td>☒</td>
</tr>
<tr>
<td>- Bypass valve is opened and resealed under responsible supervision</td>
<td>☐</td>
</tr>
<tr>
<td>- Adequate records of drainage are kept [See Dike Drainage Log in Attachment 3.3]</td>
<td>☒</td>
</tr>
<tr>
<td>For completely buried metallic tanks installed on or after January 10, 1974 at this facility [§§112.8(c)(4) and 112.12(c)(4)]:</td>
<td>☒</td>
</tr>
<tr>
<td>- Tanks have corrosion protection with coatings or cathodic protection compatible with local soil conditions.</td>
<td>☒</td>
</tr>
<tr>
<td>- Regular leak testing is conducted.</td>
<td>☒</td>
</tr>
<tr>
<td>For partially buried or bunkeried metallic tanks [§112.8(c)(5) and §112.12(c)(5)]:</td>
<td>☒</td>
</tr>
<tr>
<td>- Tanks have corrosion protection with coatings or cathodic protection compatible with local soil conditions.</td>
<td>☒</td>
</tr>
<tr>
<td>Each aboveground bulk container is tested or inspected for integrity on a regular schedule and whenever material repairs are made. Scope and frequency of the inspections and inspector qualifications are in accordance with industry standards. Container supports and foundations are regularly inspected. [See Inspection Log and Schedule and Bulk Storage Container Inspection Schedule in Attachments 3.1 and 3.2] [§112.8(c)(6) and §112.12(c)(6)(i)]</td>
<td>☒</td>
</tr>
<tr>
<td>Outsides of bulk storage containers are frequently inspected for signs of deterioration, discharges, or accumulation of oil inside diked areas. [See Inspection Log and Schedule in Attachment 3.1] [§§112.8(c)(6) and 112.12(c)(6)]</td>
<td>☒</td>
</tr>
<tr>
<td>For bulk storage containers that are subject to 21 CFR part 110 which are shop-fabricated, constructed of austenitic stainless steel, elevated and have no external insulation, formal visual inspection is conducted on a regular schedule. Appropriate qualifications for personnel performing tests and inspections are documented. [See Inspection Log and Schedule and Bulk Storage Container Inspection Schedule in Attachments 3.1 and 3.2] [§112.12(c)(6)(iii)]</td>
<td>☒</td>
</tr>
</tbody>
</table>
Each container is provided with a system or documented procedure to prevent overfills for the container. Describe:

Tank truck fuel delivery procedures:
1) Gauge (manually or via visual gauge) receiving tank to confirm liquid level in tank and quantity to be delivered to prevent tank overfill.
2) Set parking brake and use chock blocks to prevent movement; inspect fittings and fueling hose for damage before starting fuel transfer operation. The fuel delivery person makes all hook-ups.
3) Place drip pans under valve-hose fitting connections.
4) The person responsible for monitoring the delivery will remain attentive and observe the entire fuel delivery, be prepared to stop the flow of fuel from the truck to the tank at any time, and respond to any unusual condition, leak, or spill which may occur during delivery.
5) Following complete delivery, the fuel delivery person is responsible for disconnecting all hook-ups.
6) Record accurate readings for product in tank after fuel delivery, verify the amount of fuel received and make sure fill ports are properly secured.
7) If an oil spill occurs, the spill kit will be used to contain the spill. The main spill kit is located in the Facility Services – Auto Shop and Office.

Dispenser and mobile refueeler fueling procedures:
1) Before filling motorized equipment, shutoff all engines and cell phone, and set parking brakes; do not leave filling operation unattended.
2) Do not top off tank after automatic shut-off.
3) If an oil spill occurs, the spill kit will be used to contain the spill.

Transfers into waste oil drums: transfer all waste oil into the drum fill port using a funnel. If an oil spill occurs, the spill kit in the Central Plant & Facility Services will be used to contain the spill.

Transfers into waste oil AST: gauge AST (manually or via visual gauge) to confirm liquid level in tank to prevent tank overfill. If an oil spill occurs, the spill kit in the student union will be used to contain the spill.

Transfers from oil dispensing system drums: transfer all oil using a drum pump. Place drip pans under transfer/pump area. If an oil spill occurs, the spill kit in Central Plant & Facility Services will be used to contain the spill.

Liquid level sensing devices are regularly tested to ensure proper operation [See Inspection Log and Schedule in Attachment 3.1]. [§112.6(a)(3)(iii)]

Visible discharges which result in a loss of oil from the container, including but not limited to seams, gaskets, piping, pumps, valves, rivets, and bolts are promptly corrected and oil in diked areas is promptly removed. [§§112.8(c)(10) and 112.12(c)(10)]

Aboveground valves, piping, and appurtenances such as flange joints, expansion joints, valve glands and bodies, catch pans, pipeline supports, locking of valves, and metal surfaces are inspected regularly. [See Inspection Log and Schedule in Attachment 3.1] [§§112.8(d)(4) and 112.12(d)(4)]

Integrity and leak testing are conducted on buried piping at the time of installation, modification, construction, relocation, or replacement. [See Inspection Log and Schedule in Attachment 3.1] [§§112.8(d)(4) and 112.12(d)(4)]
ATTACHMENT 1 – Five Year Review and Technical Amendment Logs

ATTACHMENT 1.1 – Five Year Review Log

I have completed a review and evaluation of the SPCC Plan for this facility, and will/will not amend this Plan as a result.

<table>
<thead>
<tr>
<th>Review Date</th>
<th>Plan Amendment</th>
<th>Name and signature of person authorized to review this Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/30/20</td>
<td>☒</td>
<td>Mike Williams</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>
Any technical amendments to this Plan will be re-certified in accordance with Section I of this Plan template.

<table>
<thead>
<tr>
<th>Review Date</th>
<th>Description of Technical Amendment</th>
<th>Name and signature of person certifying this technical amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT 2 – Oil Spill Contingency Plan and Checklist

An oil spill contingency plan and written commitment of resources is required for:

- Flowlines and intra-facility gathering lines at oil production facilities and

- Qualified oil-filled operational equipment which has no secondary containment.

An oil spill contingency plan meeting the provisions of 40 CFR part 109, as described below, and a written commitment of manpower, equipment, and materials required to expeditiously control and remove any quantity of oil discharged that may be harmful is attached to this Plan.

Complete the checklist below to verify that the necessary operations outlined in 40 CFR part 109 - Criteria for State, Local and Regional Oil Removal Contingency Plans - have been included.

<table>
<thead>
<tr>
<th>Table G-15 Checklist of Development and Implementation Criteria for State, Local and Regional Oil Removal Contingency Plans (§109.5)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Definition of the authorities, responsibilities and duties of all persons, organizations or agencies which are to be involved in planning or directing oil removal operations.</td>
</tr>
<tr>
<td>(b) Establishment of notification procedures for the purpose of early detection and timely notification of an oil discharge including:</td>
</tr>
<tr>
<td>1. The identification of critical water use areas to facilitate the reporting of and response to oil discharges.</td>
</tr>
<tr>
<td>2. A current list of names, telephone numbers and addresses of the responsible persons (with alternates) and organizations to be notified when an oil discharge is discovered.</td>
</tr>
<tr>
<td>3. Provisions for access to a reliable communications system for timely notification of an oil discharge, and the capability of interconnection with the communications systems established under related oil removal contingency plans, particularly State and National plans (e.g., NCP).</td>
</tr>
<tr>
<td>4. An established, prearranged procedure for requesting assistance during a major disaster or when the situation exceeds the response capability of the State, local or regional authority.</td>
</tr>
<tr>
<td>(c) Provisions to assure that full resource capability is known and can be committed during an oil discharge situation including:</td>
</tr>
<tr>
<td>1. The identification and inventory of applicable equipment, materials and supplies which are available locally and regionally.</td>
</tr>
<tr>
<td>2. An estimate of the equipment, materials and supplies which would be required to remove the maximum oil discharge to be anticipated.</td>
</tr>
<tr>
<td>3. Development of agreements and arrangements in advance of an oil discharge for the acquisition of equipment, materials and supplies to be used in responding to such a discharge.</td>
</tr>
<tr>
<td>(d) Provisions for well defined and specific actions to be taken after discovery and notification of an oil discharge including:</td>
</tr>
<tr>
<td>1. Specification of an oil discharge response operating team consisting of trained, prepared and available operating personnel.</td>
</tr>
<tr>
<td>2. Predesignation of a properly qualified oil discharge response coordinator who is charged with the responsibility and delegated commensurate authority for directing and coordinating response operations and who knows how to request assistance from Federal authorities operating under existing national and regional contingency plans.</td>
</tr>
<tr>
<td>3. A preplanned location for an oil discharge response operations center and a reliable communications system for directing the coordinated overall response operations.</td>
</tr>
<tr>
<td>4. Provisions for varying degrees of response effort depending on the severity of the oil discharge.</td>
</tr>
<tr>
<td>5. Specification of the order of priority in which the various water uses are to be protected where more than one water use may be adversely affected as a result of an oil discharge and where response operations may not be adequate to protect all uses.</td>
</tr>
<tr>
<td>6. Specific and well defined procedures to facilitate recovery of damages and enforcement measures as provided for by State and local statutes and ordinances.</td>
</tr>
</tbody>
</table>

* The contingency plan must be consistent with all applicable state and local plans, Area Contingency Plans, and the National Contingency Plan (NCP)
ATTACHMENT 3.1 – Inspection Log and Schedule

Table G-16 Inspection Log and Schedule

This log is intended to document compliance with §§112.6(a)(3)(iii), 112.8(c)(6), 112.8(d)(4), 112.9(b)(2), 112.9(c)(3), 112.9(d)(1), 112.9(d)(4), 112.12(c)(6), and 112.12(d)(4), as applicable.

<table>
<thead>
<tr>
<th>Date of Inspection</th>
<th>Container / Piping / Equipment</th>
<th>Describe Scope (or cite Industry Standard)</th>
<th>Observations</th>
<th>Name/Signature of Inspector</th>
<th>Records maintained separately*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTs</td>
<td></td>
<td>Monthly and annual visual inspections for STI Category 1 criteria if overfill prevention present or Category 3 if overfill prevention not present (STI SP001, Standard for the Inspection of Aboveground Storage Tanks); Monthly interstitial monitoring (visual or continuous monitoring) on double-walled tanks; Annual testing for generators by vendor.</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) 983.5-gal unleaded gasoline tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) 500-gal diesel tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) 55-gal oil drum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160-gal waste cooking oil tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) 90-1,000-gal diesel generator tanks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil-filled Operational Equipment</td>
<td>Weekly visual inspections; monthly elevator servicing by vendor.</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11) 190-440-gal transformer oil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13) 55-240-gal hydraulic oil elevator tanks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary containment concrete berm</td>
<td>Weekly visual inspections and after heavy rainfall</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid level gauges</td>
<td>Annual inspections and calibration following manufacturer’s procedures</td>
<td>☐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispensers</td>
<td>Weekly visual inspections of the dispenser sumps, fill nozzles, hoses, and fittings (manufacturer instructions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spill kits</td>
<td>Monthly visual inspections and equipment/supply inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Indicate in the table above if records of facility inspections are maintained separately at this facility.
Table G-16 Inspection Log and Schedule

This log is intended to document compliance with §§112.6(a)(3)(iii), 112.8(c)(6), 112.8(d)(4), 112.9(b)(2), 112.9(c)(3), 112.9(d)(1), 112.9(d)(4), 112.12(c)(6), and 112.12(d)(4), as applicable.

<table>
<thead>
<tr>
<th>Date of Inspection</th>
<th>Container / Piping / Equipment</th>
<th>Describe Scope (or cite Industry Standard)</th>
<th>Observations</th>
<th>Name/ Signature of Inspector</th>
<th>Records maintained separately a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Indicate in the table above if records of facility inspections are maintained separately at this facility.
To comply with integrity inspection requirement for bulk storage containers, inspect/test each shop-built aboveground bulk storage container on a regular schedule in accordance with a recognized container inspection standard based on the minimum requirements in the following table.

<table>
<thead>
<tr>
<th>Container Size and Design Specification</th>
<th>Inspection requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable containers (including drums, totes, and intermodal bulk containers (IBC)): (3) 55-gal drums (1) 160-gal waste cooking oil tank</td>
<td>Visually inspect monthly for signs of deterioration, discharges or accumulation of oil inside diked areas</td>
</tr>
<tr>
<td>55 to 1,100 gallons with sized secondary containment: (2) 983.5-gal unleaded gasoline tank (1) 500-gal diesel tank (4) 90-1,000-gal diesel generator tanks</td>
<td>Visually inspect monthly for signs of deterioration, discharges or accumulation of oil inside diked areas plus any annual inspection elements per industry inspection standards. Monthly interstitial monitoring (visual or continuous monitoring) on double-walled tanks.</td>
</tr>
<tr>
<td>1,101 to 5,000 gallons with sized secondary containment and a means of leak detectiona</td>
<td>None</td>
</tr>
<tr>
<td>1,101 to 5,000 gallons with sized secondary containment and no method of leak detectiona</td>
<td>None</td>
</tr>
</tbody>
</table>

Note: According to STI SP001, in addition to monthly and annual visual inspections in the standard, the (2) 983.5-gal unleaded gasoline tanks, 500-gal diesel tank, and (4) 90-1,000-gal diesel generator tanks also require formal external inspections by a certified tank inspector and leak tests by the facility every 10 years.

a Examples of leak detection include, but are not limited to, double-walled tanks and elevated containers where a leak can be visually identified.
Table G-18 Dike Drainage Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Bypass valve sealed closed</th>
<th>Rainwater inspected to be sure no oil (or sheen) is visible</th>
<th>Open bypass valve and reseal it following drainage</th>
<th>Drainage activity supervised</th>
<th>Observations</th>
<th>Signature of Inspector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
ATTACHMENT 3.4 – Oil-handling Personnel Training and Briefing Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Description / Scope</th>
<th>Attendees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the event of a discharge of oil to navigable waters or adjoining shorelines, the following information will be provided to the National Response Center [also see the notification information provided in Section 7 of the Plan]:

Table G-20 Information provided to the National Response Center in the Event of a Discharge

<table>
<thead>
<tr>
<th>Discharge/Discovery Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name</td>
<td></td>
</tr>
<tr>
<td>Facility Location (Address/Lat-Long/Section Township Range)</td>
<td></td>
</tr>
<tr>
<td>Name of reporting individual</td>
<td>Telephone #</td>
</tr>
<tr>
<td>Type of material discharged</td>
<td>Estimated total quantity discharged</td>
</tr>
<tr>
<td>Source of the discharge</td>
<td>Media affected</td>
</tr>
<tr>
<td>☐ Soil</td>
<td>☐ ☐ Water (specify)</td>
</tr>
<tr>
<td>☐ Other (specify)</td>
<td></td>
</tr>
<tr>
<td>Actions taken</td>
<td></td>
</tr>
<tr>
<td>Damage or injuries</td>
<td>☐ No ☐ Yes (specify)</td>
</tr>
<tr>
<td>Evacuation needed?</td>
<td>☐ No ☐ Yes (specify)</td>
</tr>
<tr>
<td>Organizations and individuals contacted</td>
<td>National Response Center 800-424-8802, Time</td>
</tr>
<tr>
<td>☐ Cleanup contractor (Specify), Time</td>
<td></td>
</tr>
<tr>
<td>☐ Facility personnel (Specify), Time</td>
<td></td>
</tr>
<tr>
<td>☐ State Agency (Specify), Time</td>
<td></td>
</tr>
<tr>
<td>☐ Other (Specify), Time</td>
<td></td>
</tr>
</tbody>
</table>