
Lab 3, CSC/CPE 203 - interacting classes

Orientation
For this lab you will implement a program that simulates a community of people playing the
lottery over a period of time. It plots out their (pocket) cash over 80 years of behavior given a
rough model of the lottery.

Some background: Lotteries were introduced by states as a way to raise money for education.
Although, they seem like a good idea, in many ways, they can be very unfair. We will explore 1

and demonstrate that the Georgia model for lottery winnings unfairly redistributes money from
lower income community member to wealthier community members. For the purpose of this
assignment, people are designated as WELL_PAID or POORLY_PAID, although income
inequities are a complex and important topic, we are using a simple labeling and focus on the
computation necessary to simulate lottery playing and show whether the lottery acts as a
regressive tax . 2

Objectives

• Understand the provided base code which represents a group of community members
who are in turn represented in the code as “players”, which come from one of two groups,
WELL_PAID or POORLY_PAID. The code plots out data related to each player’s
(pocket) money in Processing over a period of 80 years. Each point in the plot is one
year’s money starting at a baseline around $100.

• Write code to simulate some members of the community playing the lottery, including
implementing various classes that interact with one another. We will build on this in
the future to introduce an important concept in OO, namely interfaces, but for now,
follow the instructions and code structure to practice writing code related to interacting
classes.

• Write code that operates on a collection of data in order to compute very simple statistics
about that data

Given Files

Retrieve the files provided for this lab on polylearn.

 http://www.radicalmath.org/docs/Lottery_Allman.pdf1

 https://www.investopedia.com/terms/r/regressivetax.asp2

http://www.radicalmath.org/docs/Lottery_Allman.pdf
https://www.investopedia.com/terms/r/regressivetax.asp

The given files include base code to help in plotting out the data for each member of the
community, specifically a model of their (pocket) money over time. You will add to this code to
simulate the impact of playing the lottery on this (pocket) money.

Task

You must add to the base code to simulate the playing of the lottery. To start, run the code to
make sure you can generate a plot similar to that shown below.

 
 
 

 
This plot is fairly boring as nothing happens each year. However, take the time to make sure you
understand what it is happening in the code thus far. Note that the community is divided into
two kinds of players designated by “playKind”, which are WELL_PAID and POORLY_PAID.
These two populations start with a small difference in pocket money, namely, well paid members
of the population start with 100.1 - 101, while those who are poorly paid start with 99.0- 99.9
dollars. The plot of these two populations’ funds are drawn either as more reddish for
WELL_PAID or more blue colored for those who are POORLY_PAID. Be sure to read
communityLSim.java to see where this difference in the kind of people/players in the
community are represented.

You will need to add several elements to simulate playing the lottery. I suggest you work
through the following steps.

1) Fill in the method in communityLSim.java called addPocketChange. This
method is meant to be executed every year (and there is already code in the
simulateYears method which calls addPocketChange, so you just need to fill it in
first to see a difference). For each player, if the kind of player is WELL_PAID, add 0.1f
each year and for POORLY_PAID add 0.03f. Test to make sure you get something like
this: 
 
 
 

 

2) Next start by writing several methods to simulate the lottery.

1) First edit the player class to add necessary data to represent the players choice for 5
numbers that they will “play” the lottery with. Also write a method playRandom()
that generates and stores 5 unique random numbers between 1 and 42. This will be the
players “lotto numbers”. Be sure each number is unique (i.e. there are no repeats).
(Consider ways to test this method by calling it and printing out the results). Each time
the players plays the lottery they should regenerate 5 new random numbers as their
lottery ticket numbers.

2) Next, create a game.java class that will represent any data necessary to play the
lottery. This class should include data to represent the “winning lottery numbers” and a
method called winningLotNumber() that generates and stores 5 unique random
numbers between 1 and 42. This will be the lottery game’s winning “lotto numbers”. Be
sure each number is unique (i.e. there are no repeats). (Consider ways to test this method
by calling it and printing out the results). Each time a player plays the lottery will pick
new winning numbers.

3) Write a method in game.java to compute how many numbers “match” (are the same)
between two lists of numbers (i.e. the players and the lottery game). This method should
return an integer value that represents how many numbers are the same in two lists of
numbers (regardless of order). Test this method by passing it two lists for which you
know the number of matches and make sure it works as expected.

4) Next write a method, in game.java, to compute the monetary result of playing. Using
the number of matches between a player’s selected numbers and the winning lottery
numbers, compute the value of that turn’s winnings (which could be negative). It always
costs one dollar to play the lottery, so start with the “winnings” being -1, however if the
player :3

• matches 2 numbers (to the winning lottery number) the “winnings” is one dollar, $1

 https://www.lotterypost.com/game/41/prizes/2018/6/293

https://www.lotterypost.com/game/41/prizes/2018/6/29

• matches 3 numbers (to the winning lottery number) the “winnings” is $10.86

• matches 4 numbers (to the winning lottery number) the “winnings” is $197.53

• matches 5 numbers (to the winning lottery number) the “winnings” is $212534.83

5) To prepare for writing the code to simulate a portion of the community playing the
lottery, fill in the helper method in communityLSim.java called
reDoWhoPlays(), which also relies on another method you must write called
randomUniqIndx(). The purpose of these methods is to simulate who in the
community will play the lottery each year. The list of who will play the lottery should be
represented by a list of integers that are an index into the list of players. Recall that the
list of players is divided into two kinds of players, with those who are POORLY_PAID
(PP) in the first half of the list (i.e. indices 0-14 for a community of 30) and those who
are WELL_PAID (WP) in the second half of the list (i.e. indices of 15-29 for a
community of 30 people). For any population, we will simulates that 60% of those who
are POORLY_PAID will play the lottery, while 40% of those who are WELL_PAID will
play the lottery, (this is a very rough model taken from information about gambling, see
source). You should end up with a list of unique indices (i.e no one plays the lottery 4

twice in one year) that is half the size of the entire population (convince yourself of this
and think carefully about how to generate this list and test via printing it to make sure
your indices are from the correct segment of the list of players). For example, for a
community of 30 players, 15 are PP, thus there should be 9 indices in the range 0-14,
and 6 indices in the range 15-29.

6) Now, fill in the method simulateYears method in communityLSim.java to use
the prior methods you have written to simulate a portion of the population playing the
lottery every year, given the following constraints. Note that you are free to add data
or getters or setters to the existing classes if you need to get or set necessary data to
make the simulation work.  
-Every year a new random group of the community will play the lottery (following the
rules spelled out above).  
-For every player who plays, add any cost or earnings from them playing the lottery to
their money.  
-In addition, to simulate that lottery winnings are redistributed to the community, we will
model the re-distribution of the winnings as a merit based scholarship (as is done in
Georgia), which unfairly distributes the money more often to those who are
WELL_PAID. Specifically, if the player lost the lottery, that ‘income' to the lottery
game, should be redistributed to someone in the community (as a `scholarship’), with a
70% chance of that person being WELL_PAID and 30% chance of that person being
POORLY_PAID. (This is roughly based on the way Georgia’s scholarships are
distributed because they are merit based and those who are WP are more likely to be able
to attend schools that have more resources, etc.) First determine from which population
the recipient will be from (using the above rule) and then randomly choose a recipient

http://www.buffalo.edu/news/releases/2014/01/001.html4

http://www.buffalo.edu/news/releases/2014/01/001.html

(with a random index value in the correct range) to receive those funds (i.e. a positive
$1).  
-Make sure that every year after all simulations, you update each players’s
moneyOverTime by adding their end of year money to the array.  
Again, add any data or helper methods you need to accomplish this simulation.  
 
When you run your code it should look something like these examples (it will not be an
exact match due to our use of random numbers):

Finally, each year compute the amount of the wealthiest person (in pocket money) and the
amount of the least wealthy person (in pocket money) and print this out each year, something
like (values will vary due to using random numbers):

After year 0:
The person with the most money has: 102.940636
The person with the least money has: 98.03151
After year 1:
The person with the most money has: 104.584656
The person with the least money has: 97.03151
….
After year 79:
The person with the most money has: 290.44998
The person with the least money has: 71.38735

Submission

This lab is to be demoed in lab by the end of lab period on Thursday 10/9.

